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Abstract

Comb-drive actuators have become a standard component of MEMS devices. Though their characteristic behavior
has been investigated extensively over the last decade, their controllable motion has been limited to the linear region of
the normalized electrostatic force. In this paper an analytical solution for the actuator displacement is presented, ar-
rived at by the Schwartz—Christoffel mapping. Resulting in a simple formula the solution enables the extension of the
usable dynamic range of a comb-drive actuator to include the nonlinear zone.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Comb-drive actuators operating on electrostatic force have become a classic component in MEMS
devices. Their application spans the range from linear actuation (Tang et al., 1990), through rotational
actuation (Sniegowski and Garcia, 1996), accelerometry (Yun et al., 1992), scanning probes (Yao et al.,
1992), gyroscopes (Pisano, 1989), RF filtering (Wang and Nguyen, 1999) and microgripping (Kim et al.,
1990). It is natural, therefore, that considerable interest and effort have been invested in their improvement.
The case is always how to minimize the size of the device yet fully control its motion, preferably under the
smallest electric field. Thus, several groups presented analyses and ways of optimally designing comb-drive
actuators, for instance Ye et al. (1998) and Jensen et al. (2001).

Conformal mapping is an important technique used in the analysis of electromagnetic fields, including
integrated electrooptical structures (Goano et al., 2001). Particularly for the case of interdigitated capac-
itors circumventing polygonal regions the Schwartz—Christoffel (SC) formula, a special conformal trans-
formation, is applicable. While an analytical approach is suitable for a limited number of geometrical
patterns, a more general, numerical tool has become standard for design purposes (Driscoll, 1996, 1999).
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Still, even the analytically solvable simple cases may lend themselves to predict the electrostatic forces
exerted in comb-drives (Brown and Churchill, 1995).

The objective of this paper is to solve analytically the problem of the electrostatic force driving a comb-
drive actuator. Suggested further is that the algebraic expression for the electrostatic driving force will
permit controlling the actuator motion over an extended range, beyond the traditionally used linear range.
In this manner, the developed model is useful to predict the instability of comb-drive actuators in the
nonlinear condition.

2. Theory
2.1. Description of the problem and its reduction

The problem before us is that of electrostatic force acting on a dielectric body, moving fingers of a comb-
drive actuator. The geometrical complexity of the comb-drive structure, illustrated in Fig. la, can be re-
duced to a two dimensional problem due to the fixed fingers positive charge, and the moving fingers and
substrate zero charge, illustrated in Fig. 1b. The problem can be further reduced, owing to symmetry, to
some basic building blocks represented by a single moving and fixed finger, represented by the cell in Fig.
lc. Another simplification is attained by selecting the part enclosed in the broken box in Fig. lc, thus
producing the patterns shown in Fig. 1d, then in turn in Fig. le. Thus one arrives at a few elemental
structures (see Fig. 1d and e) which while being solvable, represent the entire complex.
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Fig. 1. Schematic of a comb-drive configuration: (a) in the horizontal plane, (b) in the vertical plane, (c) detail defined by the broken-
line rectangle in (a), (d) detail defined by the broken-line rectangle in (c), and (e) detail defined by the broken-line rectangle in (d).
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Fig. 2. Three positions of the moving finger relative to the comb-drive stator: (a) case 1: finger very close to stator base, (b) case 2:
finger distance from stator base equal to the gap between the moving and fixed finger, and (c) case 3: finger very far from stator relative
to the gap.

The electrostatic field of interest lies between the moving and fixed finger. It is formally defined by
boundary values and a governing Laplace equation, i.e. V?¢ = 0, where ¢ is the electrostatic potential. The
polygonal yet complex geometry renders the problem conveniently solvable by conformal transformation,
thus mapping it onto a plane where it can be expressed in a simple, canonical form. For the polygonal
geometry the transformation of choice is of the Schwartz—Christoffel type. Thus one begins by establishing
a dw/dz expression, leading to the mapping of the w (= u + iv) plane domain containing the pattern of
interest to a z (= x + iy) plane. The mapping of any shape in this manner produces a domain containing the
entire upper half of the z plane. In turn the z plane is transformed to the canonical n plane, where the
domain of interest is mapped to an infinite strip. Thus found is a solution for the potential as a function of 5
(= &+ 1), which is traced back to its equivalent in w.

Based on their adequate representation of the physical problem, three simple cases were selected to
model the motion of a comb-drive. Though each pertains to a certain range within the moving-finger path,
together they describe the moving finger at any location within the fixed array. Fig. 2 illustrates the three
cases where: (a) is the region very close to the stator base relative to the gap it forms with the fixed finger,
(b) the distance of the moving finger from the stator base equals the gap, and (c) the moving finger is far
from the stator base relative to the gap.

2.2. Solution

2.2.1. Case 1
Assuming a moving finger with a width of 2a distanced at 4 from the fixed base, as shown in Fig. 2a, the
plane w maps to the upper half of a plane z via the Schwartz—Christoffel derivative dw/dz, as

d Vz+1
dw_ gvet 7 (1)
dz z

where B is a constant. Assuming values of w = 0 at z = —1, i.e. the origin of w lies at the tip of the moving

finger, as depicted in Fig. le the integral of Eq. (1) is
2
w(u,v) = Eh Vz+1—tanh ' (Vz 1)} (2)

Determined by the geometry B becomes //n. The map in plane z is shown in Fig. 3a. Note that the
boundary values apply such that ¢ =0 at z < 0, and ¢ = V at 0 < z. The mapping to plane 5 is accom-
plished via n = In(z), thus forming an infinite strip as shown in Fig. 3c. The boundary values apply such
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Fig. 3. Conformal transformation of the polygon (a) in the w plane, to the upper half-plane in z (b), and an infinite strip in 5 (c).

that ¢ = 0 at Im(n) = —mw and ¢ = V at Im() = 0. The field potential is obtained by solving the governing
Laplace equation in the # plane:
Im(y
$(n) = V[l +#]

(3)
Once the derivative dw/dz is solved producing the mapping transformations of Eq. (2) and the second
transformation to plane 5 is accomplished via n = In(z), the field potential is produced by the inverse
transformation:

o= {1 I, g gy it

(4)
here g is the implicit function of w, i.e. reciprocal to the function in Eq. (2), such that z = g(w)
The electrostatic distributed force at the surface is determined by

1,1 [agw)]’.
f—‘ﬂqz”—‘zg[ on ]

(5)

where ¢ is the electric charge, ¢ is the permittivity and 7 is a unit vector normal to the surface. The potential
gradient is expressed as

0p(w) _ 0p(w) | .0p(w) op(w) ] .o [0p(w)
= A +1 % :Re{ e ]—Hlm[w}. (6)
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Next

o¢(w) _ 0Im{In[g(w)]} _dIm(in(z)] dz

ow ow Oz dw’ ()

In the last term one identifies at the right hand side the inverse Schwartz—Christoffel derivative dw/dz. With
some algebra the derivative in z becomes remarkably simple, expressed as

dIm[In(z)] _g tan-! (Z) _ 17 (1_,_11) _ —il. (8)

0z 0z XX x z

Consequently the potential gradient is

d(w) oo 1 v |0 —I<z<0;
RC aw :—;RC lﬁ :; 1 Z<—1 (9)
vz V-1-2
and
dp(w) v 1 y 2 1<z<0
w . —, —-1<z ;

Substituting these expressions in Eq. (4) results in the following distributed force density:

7\ 2 i%, —1<2z<0;
(-) +z (11)

b 1
— —1.
=2 z <

The total force per thickness acting along the surface in the direction of motion is the integral over the
surface; from w = a to iH, where a is half the rod width and H is the finger length. The evaluation of the
force along the surface begins with integrating the distributed force density over w, then transforming to
the z plane:

e (V\? A i

FE(E) <1/a 1+Zdw+/0 Z+1dW>
e (V' 11 dw 1 dw

BACTASE & ¢ + dz). 12
2(“) ( l/z(, 14z dz Z+/,1 z+1 dz Z) (12)

The term (z + 1)71 in the integrand can be replaced by the expression (de;)z derived from Eq. (1), thus the
force integral can be rewritten as
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(hV)2<—i/ao <%>2dw+/ow (%)zdw>

F =

NS}

e (V' (7' dz > dz
_§<E) <_1/ZO szwdz+[1 zzdwdz)
SO e L )
“2\n) B o zvVz+ 1 1 zvz+1
=— in———| +In——
2mh Vz+1+4+1] Vz+1+1
SVz( . 1—\/1—20)
n—il .
Note that similarly the potential gradient may be expressed as
dp(w) _K( dz )

B PR E e | R L T {
-1
= — n————
21th 1++1—2
on(w)  m \zdw

(14)

surface

The integrand (szjw)dz allows deriving the total force for any given geometry, since the term dz/dw is
defined either by Eq. (1) or another Schwartz—Christoffel derivative.
From the result of Eq. (13) the normalized force becomes

2 1. 1-T=3
2—=1-1-1
el?

R VT (1)
where z, of the z plane corresponds to a in the w plane, determined by Eq. (2). Considering that the analysis
is carried out for half a moving finger, the resulting normalized force is doubled, as expressed in Eq. (15). It
contains a component dependent on z, in the negative direction of v, and a constant component in the
positive direction of u. The latter is a unity, identical to a direct solution of the finger-capacitor. Note that
for zy = 0 the force component in the v direction is infinite, because this represents an infinitely wide finger.

Formally it is possible to express the force directly by the w space in a transcendental equation thus
omitting zy. Let F, be the force component directed at —i, then by substituting the value of (1 — zo)l/ * from
Eq. (15) in Eq. (2) one obtains:

F.h Fh ma
tanh <nm> —RW—I—EZ—O. (16)

However, one may find the use of the two Eqgs. (2) and (15) more practical than Eq. (16).

2.2.2. Case 2

Let the geometry of a long moving finger within the stator be simplified to half a rectangular finger
adjacent to a rectangular chassis charged by electric potential. Assuming as previously a width of 2a, a
distance of b ~ A to the wall and a distance 4 between the rod and the base illustrated in Fig. 2b, w maps to
the upper half of a plane z via the Schwartz—Christoffel derivative dw/dz, such that

d Vz+1
w_pvEtl (17)
dz zvz—1

where B is a constant. Assuming values of w = 0 at z = —1, i.e. the origin of w lies at the tip of the moving

finger, and w = h(1 +1) at z =1 the integral results in



M. M. Tilleman | International Journal of Solids and Structures 41 (2004) 48894898 4895

w(u,v)_h{lT“_H_sinl <é) +isin1(z)]}, (18)

where z = x + 1y, and w = u + iv.

Determined by the geometry B becomes iz/n. The boundary values apply such that ¢ = 0 at z < 0, and
¢ =V at 0 < z. Next the z plane, shown in Fig. 3b, is mapped to a plane 5 via 5 = In(z) thus forming an
infinite strip as shown in Fig. 3c. The boundary values apply such that ¢ = 0 at Im(y) = —mand ¢ =V at
Im(n) = 0.

Following the procedure in case 1 one arrives at the following expression for the force per depth unit:

e (V\? oz (0 z—1

whereby the normalized force after carrying out the integral becomes

2% = % +% (cosh_lzl —sin”! le) - 1B +% (cosh_l zlo_ sin”’ ZO)} , (20)
where zy and z; of the z plane correspond to a and iH in the w plane, and are found from Eq. (18). The
resulting force shows a component dependent on z, in the negative direction of v(—i), and a component
dependent on z; in the positive direction of u. Implied in Eq. (18) is that the integral is over the conformally
transformed domain z rather than over w, omitting the problem of singularity at w = 0. Note the full
symmetry of the solution allowing a system rotation by 90°.

Again, it is possible to express the force by the w space directly in a transcendental equation thus
omitting zy and z;. Let F, be the force component directed at —i, then by substituting the value of z, and z,
from Eq. (18) in Eq. (19) one arrives at

Fh 2 -1 2(.Fh a a _
ZW_ECOSh {sec[g(Zm—l—Z)}}—Z—kl—O- (21)

2.2.3. Case 3

This case, illustrated by Fig. 2c, is treated in the section for case 1 concentrating on the force in the
positive direction of u. As derived in Eq. (15), the normalized force is a unity, identical to a direct solution
of the finger capacitor.

3. Results and discussion

The normalized force, for b : @ = 3.5 : 1.5, acting on the moving finger 2Fb/¢V? in the three solved cases
is plotted against the normalized engagement distance 6/b = (dp — k) /b in Fig. 4, where Jy is the full motion
stroke. Case 1 is the monotonously growing curve, case 2 is the point at 4 = b or d,/b — 1, and case 3 is the
horizontal curve. Because each case represents only a limited range within the path of the moving finger, it
is necessary to combine them in order to produce an expression compatible with the entire motion stroke.
One considers the following phenomena: (1) on increasing 4 and approaching the point 4 = b case 1 begins
to underestimate the actual force, and (2) on increasing ¢ and approaching # = b case 3 begins to under-
estimate the actual force.

Essentially, the force of case 1 becomes gradually less dominant as the finger moves away from the
immediate proximity to the stator base where the effect of the force of case 3 is small. Then, the latter force
begins to dominate when the finger moves to the far zone from the stator base. At the point 2 = b case 2 is
the true solution. Therefore, the force throughout the moving region can be expressed as
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Fig. 4. The normalized force acting on the moving finger for # = b: (a) cases 1 and 3 are represented by the broken line and case 2 is the
single circle, and (b) the combined force due to Eq. (22) is represented by the solid line.

25D Y, g

where o and f are weight functions. What one must reckon with is that the forces for cases 1 and 3
dominate specific respective regions, while outside of those regions their effect is negligible. Considering the
decaying contributions of these forces on departing from their domination zones, these functions may be
assumed to follow an arctan pattern, such that

o 11 ,01—0
a(0) = 3 + - tan 7 (23)
and
1 1 0 — 0
S) ==+ = -1 24
BO) =5+ tan ! 22, (24)

where the constants 0, d,, 4, 4, are obtained from the force values at 4 = b, in the case 1 zone & < b, and
in the case 3 zone 4 > b. Further assumed is that case 1 ends at 2 = b/3 and case 3 begins at # = 3b where
the combined expression is evaluated at 99% of the case 3 magnitude. The combined calculation for the
three cases due to Eq. (22) is also shown in Fig. 4. Observe that the curves up to 4 = 3b and from 4 = b/3
overlap closely cases 3 and 1, respectively, while case 2 is always fully maintained.

The calculation is plotted in Fig. 5 in comparison with a finite-elements calculation. An excellent
agreement is found between the theory and the numerical calculations. Then the analytical solution is
plotted in Fig. 6 with b to a ratio as a parameter. The corresponding values of the constants d;, 6, 4, 4,
are given in Table 1.
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Fig. 5. Analytical result compared with a finite-elements calculation. The parameters are: @ = 1.5 pm, b = 3.5 pm.
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Fig. 6. Force predictions versus a moving finger displacement for b = a, 3a and 5a.

Table 1

Values of parameters d;, d5, 41, 4,, given in pum, for a number of gap-to-half finger-width 4 : a ratios
b:a 51 (52 Al AZ
1:1 16.84 15.83 0.45 0.29
2:1 16.52 15.96 0.32 0.25
3:1 15.99 14.19 0.76 0.59
5:1 15.16 13.40 0.83 0.72
3.5:1.5 15.40 13.49 1.13 0.88

4. Conclusions

A simple expression for the electrostatic force of a comb-drive moving-finger for the full stroke has been
derived analytically. It covers the displacement path up to a nearly complete attachment to the stator basis.
The normalized force equals unity up to the point 6/b = dy/b — 3, then it grows up to the point
0/b = 0¢/b—1/3, then it escalates rapidly. Traditionally only the first of these zones, of the constant
normalized force, has been controllably used in MEMS devices. Once an algebraic formula for the force is
at hand, it can be used in the equation of motion to generate a transfer function valid throughout the entire
engagement path. Hence the controllable motion stroke can be extended to include also the range where the
force escalates approaching the “pull-in” region. Alternately, the nonlinear condition predicted by the
model identifies the instability region of comb-drive actuators.
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